If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2=180
We move all terms to the left:
5p^2-(180)=0
a = 5; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·5·(-180)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*5}=\frac{-60}{10} =-6 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*5}=\frac{60}{10} =6 $
| 6.75+3/8x=52/4 | | 3x-5=2-7 | | 4+2t=24 | | 3=b+53 | | (5-x)^1/2=x+1 | | m/3=m/2-1 | | 16=11+y | | 5/2+1/4=11/4+x | | v+2.38=8.45 | | 3/4-3x=1/4/x | | 8w-15=-25 | | r2=1 | | 5x-18=2-3x | | 3=5+6x | | (3x^2-5)^2=19 | | 12(x+5)-3x=15 | | 3x-27=50 | | 4=10+z4 | | 2x(x-3)=3 | | 5/x=25+5/x | | X^2+101=20x | | 27=9t | | 2x(x-3)=32x(x-3)=3 | | -2(3x–2)+4x=11 | | s+9=17 | | 4x+4=6x–2 | | 1/5(x-4)+3=-1/3(2x+1)-1 | | 9x+8=3x+10 | | 4(x-3)(3x+2)^4+5(3x+2)^5/(3x+2)^10=0 | | (2*5)+3y=31 | | x2+45=18x | | 7/9+x=8/9 |